Nucleotide variability at G6pd and the signature of malarial selection in humans.
نویسندگان
چکیده
Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common enzymopathy in humans. Deficiency alleles for this X-linked disorder are geographically correlated with historical patterns of malaria, and the most common deficiency allele in Africa (G6PD A-) has been shown to confer some resistance to malaria in both hemizygous males and heterozygous females. We studied DNA sequence variation in 5.1 kb of G6pd from 47 individuals representing a worldwide sample to examine the impact of selection on patterns of human nucleotide diversity and to infer the evolutionary history of the G6PD A- allele. We also sequenced 3.7 kb of a neighboring locus, L1cam, from the same set of individuals to study the effect of selection on patterns of linkage disequilibrium. Despite strong clinical evidence for malarial selection maintaining G6PD deficiency alleles in human populations, the overall level of nucleotide heterozygosity at G6pd is typical of other genes on the X chromosome. However, the signature of selection is evident in the absence of genetic variation among A- alleles from different parts of Africa and in the unusually high levels of linkage disequilibrium over a considerable distance of the X chromosome. In spite of a long-term association between Plasmodium falciparum and the ancestors of modern humans, patterns of nucleotide variability and linkage disequilibrium suggest that the A- allele arose in Africa only within the last 10,000 years and spread due to selection.
منابع مشابه
The extent of linkage disequilibrium caused by selection on G6PD in humans.
The gene coding for glucose-6-phosphate dehydrogenase (G6PD) is subject to positive selection by malaria in some human populations. The G6PD A- allele, which is common in sub-Saharan Africa, is associated with deficient enzyme activity and protection from severe malaria. To delimit the impact of selection on patterns of linkage disequilibrium (LD) and nucleotide diversity, we resequenced 5.1 kb...
متن کاملEvidence for balancing selection from nucleotide sequence analyses of human G6PD.
Glucose-6-phosphate dehydrogenase (G6PD) mutations that result in reduced enzyme activity have been implicated in malarial resistance and constitute one of the best examples of selection in the human genome. In the present study, we characterize the nucleotide diversity across a 5.2-kb region of G6PD in a sample of 160 Africans and 56 non-Africans, to determine how selection has shaped patterns...
متن کاملPresent status of understanding on the G 6 PD deficiency and natural
G6PD deficiency is a common hemolytic genetic disorder, particularly in the areas endemic to malaria. Individuals are generally asymptomatic and hemolytic anemia occurs when some anti-malarial drugs or other oxidizing chemicals are administered. It has been proposed that G6PD deficiency provides protection against malaria. Maintaining of G6PD deficient alleles at polymorphic proportions is comp...
متن کاملHaplotype diversity and linkage disequilibrium at human G6PD: recent origin of alleles that confer malarial resistance.
The frequencies of low-activity alleles of glucose-6-phosphate dehydrogenase in humans are highly correlated with the prevalence of malaria. These "deficiency" alleles are thought to provide reduced risk from infection by the Plasmodium parasite and are maintained at high frequency despite the hemopathologies that they cause. Haplotype analysis of "A-" and "Med" mutations at this locus indicate...
متن کاملEvaluation of Genetic Variability in a Breeder Flock of Native Chicken Based on Randomly Amplified Polymorphic DNA Markers
A study was undertaken to evaluate the genetic variation in the 10th generation of a breeder flock of native breed selected for high egg and meat production in native fowls breeding station, Mazandaran, Iran. Venous blood samples were collected from 100 birds of both sexes. The RAPD-PCR technique was applied to generate a DNA fingerprint of individuals. Initially, a total of 20 ten-nucleotide a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 162 4 شماره
صفحات -
تاریخ انتشار 2002